منابع مشابه
The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes.
Thionins are small cysteine-containing, amphipathic plant proteins found in seeds and vegetative tissues of a number of plant genera. Many of them have been shown to be toxic to microorganisms such as fungi, yeast, and bacteria and also to mammalian cells. It has been suggested that thionins are present in seeds to protect them, and the germinating seedling, from attack by phytopathogenic micro...
متن کاملAmyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology.
Amyloid beta protein (AbetaP) is the major constituent of senile plaques associated with Alzheimer's disease (AD). However, its mechanistic role in AD pathogenesis is poorly understood. Globular and nonfibrillar AbetaPs are continuously released during normal metabolism. Using techniques of atomic force microscopy, laser confocal microscopy, electrical recording, and biochemical assays, we have...
متن کاملThe p7 Protein of Hepatitis C Virus Forms Structurally Plastic, Minimalist Ion Channels
Hepatitis C virus (HCV) p7 is a membrane-associated oligomeric protein harboring ion channel activity. It is essential for effective assembly and release of infectious HCV particles and an attractive target for antiviral intervention. Yet, the self-assembly and molecular mechanism of p7 ion channelling are currently only partially understood. Using molecular dynamics simulations (aggregate time...
متن کاملThe small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels.
The small hydrophobic (SH) protein is encoded by the human respiratory syncytial virus. Its absence leads to viral attenuation in the context of whole organisms, and it prevents apoptosis in infected cells. Herein, we have examined the structure of SH protein in detergent micelles and in lipid bilayers, by solution NMR and attenuated total reflection-Fourier transform infrared spectroscopy, res...
متن کاملIon channels in genetic and acquired forms of epilepsy.
Genetic mutations causing dysfunction of both voltage- and ligand-gated ion channels make a major contribution to the cause of many different types of familial epilepsy. Key mechanisms comprise defective Na(+) channels of inhibitory neurons, or GABA(A) receptors affecting pre- or postsynaptic GABAergic inhibition, or a dysfunction of different types of channels at axon initial segments. Many of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2014
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2013.11.3056